A note on polynomial interpolation at the Chebyshev extrema nodes
نویسندگان
چکیده
منابع مشابه
Multivariate polynomial interpolation on Lissajous-Chebyshev nodes
In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...
متن کاملBivariate Lagrange Interpolation at the Chebyshev Nodes
We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...
متن کاملExplicit solution of the polynomial least-squares approximation problem on Chebyshev extrema nodes
In this paper we propose an explicit solution to the polynomial least squares approximation problem on Chebyshev extrema nodes. We also show that the inverse of the normal matrix on this set of nodes can be represented as the sum of two symmetric matrices: a full rank matrix which admits a Cholesky factorization and a 2-rank matrix. Finally we discuss the numerical properties of the proposed fo...
متن کاملA polynomial interpolation process at quasi-Chebyshev nodes with the FFT
Interpolation polynomial pn at the Chebyshev nodes cosπj/n (0 ≤ j ≤ n) for smooth functions is known to converge fast as n → ∞. The sequence {pn} is constructed recursively and efficiently in O(n log2 n) flops for each pn by using the FFT, where n is increased geometrically, n = 2i (i = 2, 3, . . . ), until an estimated error is within a given tolerance of ε. This sequence {2j}, however, grows ...
متن کاملBivariate Polynomial Interpolation at the Geronimus Nodes
We consider a class of orthogonal polynomials that satisfy a threeterm recurrence formula with constant coefficients. This class contains the Geronimus class and, in particular, all four kinds of the Chebyshev polynomials. There are alternation points for each of these orthogonal polynomials that have a special compatibility with the polynomials of lower index. These points are the coordinates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1984
ISSN: 0021-9045
DOI: 10.1016/0021-9045(84)90046-7